Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Biomech Eng ; 146(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456810

RESUMO

This paper introduces a hands-on laboratory exercise focused on assembling and testing a hybrid soft-rigid active finger prosthetic for biomechanical and biomedical engineering (BME) education. This hands-on laboratory activity focuses on the design of a myoelectric finger prosthesis, integrating mechanical, electrical, sensor (i.e., inertial measurement units (IMUs), electromyography (EMG)), pneumatics, and embedded software concepts. We expose students to a hybrid soft-rigid robotic system, offering a flexible, modifiable lab activity that can be tailored to instructors' needs and curriculum requirements. All necessary files are made available in an open-access format for implementation. Off-the-shelf components are all purchasable through global vendors (e.g., DigiKey Electronics, McMaster-Carr, Amazon), costing approximately USD 100 per kit, largely with reusable elements. We piloted this lab with 40 undergraduate engineering students in a neural and rehabilitation engineering upper year elective course, receiving excellent positive feedback. Rooted in real-world applications, the lab is an engaging pedagogical platform, as students are eager to learn about systems with tangible impacts. Extensions to the lab, such as follow-up clinical (e.g., prosthetist) and/or technical (e.g., user-device interface design) discussion, are a natural means to deepen and promote interdisciplinary hands-on learning experiences. In conclusion, the lab session provides an engaging journey through the lifecycle of the prosthetic finger research and design process, spanning conceptualization and creation to the final assembly and testing phases.


Assuntos
Membros Artificiais , Engenharia Biomédica , Humanos , Engenharia Biomédica/educação , Extremidade Superior , Mãos , Currículo
2.
Prosthet Orthot Int ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019000

RESUMO

BACKGROUND: Vertical displacement of the residual limb within transtibial prosthetic socket, often known as "pistoning" or downward movement, may lead to skin breakdowns and ulcers. Downward movement is particularly difficult to self-manage for diabetic individuals living with amputation because of diminished sensation in the residual limb from peripheral neuropathy. Therefore, a customizable sensor at the distal end that can alert the users when high-risk downward movement and pistoning occurs is urgently needed. OBJECTIVES: Presented herein for the first time is a lightweight, inexpensive sensing system inspired by soft robotics that can detect the occurrence and severity of downward movement at the distal end. METHODS: The sensing system consists of a multilayered torus-shaped balloon, allowing easy integration with pin-lock socket systems. The design allows sensing of vertical displacement without imparting high reaction forces back onto the distal end. A benchtop compression tester was used to characterize system performance. Systematic and parametric benchtop tests were conducted to examine the sensor's physical characteristics. Long-term (24-h) stability of the sensor was also recorded. RESULTS: Compared with water, air was determined to be a better medium with a higher linear full-scale span (FSS) because of its compressible nature. Repeatable 0.5-mm vertical displacements yielded a linear (>0.99 R2) FSS of 4.5 mm and a sensitivity of 0.8 kPa/mm. The sensing system is highly precise, with as low as 1% FSS total error band and average hysteresis of 2.84% of FSS. Over 24 h, a 4% FSS drift was observed. CONCLUSION: Sensing system characteristics, coupled with low-cost, customizable fabrication, indicates promising performance for daily use to notify and alert transtibial prosthetic users of downward movement and/or pistoning.

3.
Electrophoresis ; 44(7-8): 646-655, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36502493

RESUMO

Free-flow electrophoresis (FFE) has the ability to continuously separate charged solutes from complex biological mixtures. Recently, a free-flow counterflow gradient focusing mechanism has been introduced to FFE, and it offers the potential for improved resolution and versatility. However, further investigation is needed to understand the solute dispersion at the focal position. Therefore, the goal of this work is to model the impact of electroosmotic flow, which is found to produce a pressure-driven backflow to maintain the fixed counterflow inputs. Like the counterflow, this backflow has a parabolic velocity profile that must be considered when predicting the concentration distribution of a given solute. After the model is established, preliminary experimental results are presented for a qualitative comparison. Results demonstrate a reasonable agreement at low applied voltages and provide a strong framework for future experimental validation.


Assuntos
Eletro-Osmose , Eletroforese/métodos , Soluções
4.
Biomicrofluidics ; 16(3): 034107, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35783680

RESUMO

Residual limb volume fluctuation and the resulting contact pressures are some of the key factors leading to skin ulcerations, suboptimal prosthetic functioning, pain, and diminishing quality of life of transtibial amputees. Self-management of socket fit is complicated by peripheral neuropathy, reducing the perception of pressure and pain in the residual limb. We introduce a novel proof-of-concept for a transtibial prosthetic socket liner with the potential to dynamically adjust the fit between the limb and socket. The core of the technology is a small air microfluidic chip (10 cm3 and 10 g) with 10 on-chip valves that enable sequential pressurizing of 10 actuators in custom sizes to match the pressures required by the residual limb's unique anatomy. The microfluidic chip largely reduced the number of electromechanical solenoid valves needed for sequential control of 10 actuators (2 instead of 10 valves), resulting in the reduction of the required power, size, mass, and cost of the control box toward an affordable and wearable prosthetic socket. Proof-of-concept testing demonstrated that the applied pressures can be varied in the desired sequence and to redistribute pressure. Future work will focus on integrating the system with biofidelic prosthetic sockets and residual limb models to investigate the ability to redistribute pressure away from pressure-sensitive regions (e.g., fibular head) to pressure tolerant areas. Overall, the dynamic prosthesis socket liner is very encouraging for creating a dynamic socket fit system that can be seamlessly integrated with existing socket fabrication methods for managing residual limb volume fluctuations and contact pressure.

5.
Biomicrofluidics ; 16(3): 034101, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35572207

RESUMO

A proof of concept of a novel air microfluidics-enabled soft robotic sleeve to enable lymphedema treatment is presented. Compression sleeves represent the current, suboptimal standard of care, and stationary pumps assist with lymph drainage; however, effective systems that are truly wearable while performing daily activities are very scarce. This problematic trade-off between performance and wearability requires a new solution, which is addressed by an innovative microfluidic device. Its novelty lies in the use of light, small, and inexpensive air microfluidic chips (35 × 20 × 5 mm3 in size) that bring three major advantages compared to their traditional counterparts. First, each chip is designed with 16 fluidic channels with a cross-sectional area varying from 0.04 to 1 mm2, providing sequential inflation and uniform deflation capability to eight air bladders, thereby producing intentional gradient compression to the arm to facilitate lymph fluid circulation. The design is derived from the fundamentals of microfluidics, in particular, hydraulic resistance and paths of least resistance. Second, the air microfluidic chip enables miniaturization of at least eight bulky energy-consuming valves to two miniature solenoid valves for control increasing wearability. Third, the air microfluidic chip has no moving parts, which reduces the noise and energy needed. The cost, simplicity, and scale-up potential of developing methods for making the system are also detailed. The sequential inflation, uniform deflation, and pressure gradient are demonstrated, and the resulted compression and internal air bladder pressure were evaluated. This air microfluidics-enabled sleeve presents tremendous potential toward future improvements in self-care lymphedema management.

6.
Lab Chip ; 22(12): 2307-2314, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35466338

RESUMO

The global COVID-19 pandemic caused by SARS-CoV-2 has resulted in an unprecedented economic and societal impact. Developing simple and accurate testing methods for point-of-care (POC) diagnosis is crucial not only for the control of COVID-19, but also for better response to similar outbreaks in the future. In this work, we present a novel proof-of-concept of a microfluidic microwave sensing method for POC diagnosis of the SARS-CoV-2 virus. This method relies on the antibody immobilized on the microwave sensor to selectively capture and concentrate the SARS-CoV-2 antigen or virus present in a buffer solution flowing through the sensor region in a microchannel. The capturing of the SARS-CoV-2 antigen or virus results in a change in the permittivity of the medium near the sensor region reflected by the resonance frequency shift which is used for detection. The use of microchannels offers precise control of the sample volume and the continuous flow nature also offers the potential to monitor the dynamic capturing process. The microwave-microfluidic device shows a good sensitivity of 0.1 ng ml-1 for the SARS-CoV-2 antigen and 4000 copies per ml for the SARS-CoV-2 virus. The resonance frequency shift presents a linear relationship with the logarithm of antigen or virus concentration, respectively. This detection method is able to distinguish SARS-CoV-2 from the antigen of human CD4 and two human coronaviruses (MERS and HKU1), which presents a new pathway towards POC diagnosis of the COVID-19 at the community level. It presents the potential to detect other viruses by functionalizing the microwave sensor with respective antibodies.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Indicadores e Reagentes , Microfluídica , Micro-Ondas , Pandemias
7.
Phys Rev E ; 105(2-2): 025105, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291127

RESUMO

The extension of microfluidics to many bioassay applications requires the ability to work with non-Newtonian fluids. One case in point is the use of microfluidics with blood having different hematocrit levels. This work is the first part of a two-part study and presents the formation dynamics of blood droplets in a T-junction generator under the squeezing regime. In this regime, droplet formation with Newtonian fluids depends on T-junction geometry; however, we found that in the presence of the non-Newtonian fluid such as red blood cells, the formation depends on not only to the channel geometry, but also the flow rate ratio of fluids, and the viscosity of the phases. In addition, we analyzed the impact of the red blood cell concentration on the formation cycle. In this study, we presented the experimental data of the blood droplet evolution through the analysis of videos that are captured by a high-speed camera. During this analysis, we tracked several parameters such as droplet volume, spacing between droplets, droplet generation frequency, flow conditions, and geometrical designs of the T junction. Our analysis revealed that, unlike other non-Newtonian fluids, where the fourth stage exists (stretching stage), the formation cycle consists of only three stages: lag, filling, and necking stages. Because of the detailed analysis of each stage, a mathematical model can be generated to predict the final volume of the blood droplet and can be utilized as a guide in the operation of the microfluidic device for biochemical assay applications; this is the focus of the second part of this study [Phys. Rev. E 105, 025106 (2022)10.1103/PhysRevE.105.025106].

8.
Phys Rev E ; 105(2-2): 025106, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291163

RESUMO

This work represents the second part of a two-part series on the dynamics of droplet formation in a T-junction generator under the squeezing regime when using solutions of red blood cells as the dispersed phase. Solutions containing red blood cells are non-Newtonian; however, these solutions do not behave in the same way as other non-Newtonian fluids currently described in the literature. Hence, available models do not capture nor predict important features useful for the design of T-junction microfluidic systems, including droplet volume. The formation of a red blood cell-containing droplet consists of three stages: a lag stage, a filling stage, and a necking stage, with the lag stage only observed in narrow dispersed phase channel setups. Unlike other shear-thinning fluids, thread elongation into the main channel at the end of the necking stage is not observed for red blood cell solutions. In this work, a model that predicts the final droplet volume of a red blood cell containing droplets in T-junction generators is presented. The model combines a detailed analysis of the geometrical shape of the droplet during the formation process, with force and Laplace pressure balances to obtain the penetration depth (b_{fill}^{*}) and the critical neck thickness (2r_{pinch}^{*}) of the droplet. The performance of the model was validated by comparing the operational parameters (droplet volume, the spacing between the droplet, and the generation frequency) with the experimental data across a range of the dimensionless parameters (flow rate ratios, continuous phase viscosities, and channel geometries).

9.
Transl Vis Sci Technol ; 11(3): 1, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35234832

RESUMO

PURPOSE: To evaluate the shear viscosity of contemporary, commercially available ocular lubricants at various shear rates and temperatures and to derive relevant mathematical viscosity models that are impactful for prescribing and developing eye drops to treat dry eye disease. METHODS: The shear viscosity of 12 ocular lubricants was measured using a rheometer and a temperature-controlled bath at clinically relevant temperatures at which users may experience exposure to the drops (out of the refrigerator [4.3°C]; room temperature [24.6°C]; ocular surface temperature [34.5°C]). Three replicates for each sample at each temperature were obtained using a standard volume (0.5 mL) of each sample. The viscosity of each ocular lubricant was measured over the full range of shear rates allowed by the rheometer. RESULTS: The shear viscosity of the same ocular lubricant varied significantly among the three temperatures. In general, a higher temperature resulted in smaller viscosities than a lower temperature (an average of -48% relative change from 4.3°C to 24.6°C and -21% from 24.6°C to 34.5°C). At a constant temperature, the viscosity of an ocular lubricant over the studied shear rates can be well approximated by a power-law model. CONCLUSIONS: Rheological analysis revealed that the ocular lubricants exhibited shear-thinning behavior at the measured temperatures. Differences in the ocular lubricants' formulations and measured temperatures resulted in different viscosities. TRANSLATIONAL RELEVANCE: When prescribing eye drops, eye care professionals can select the optimal one for their patients by considering a variety of factors, including its rheological property at physiologically relevant shear rates and temperatures, which can improve residence time on the ocular surface, while ensuring appropriate comfort and vision. However, care must be taken when using the derived mathematical models in this study because the in vivo shear behavior of the ocular lubricants has not been examined and might show deviations from those reported when placed on the ocular surface.


Assuntos
Síndromes do Olho Seco , Síndromes do Olho Seco/tratamento farmacológico , Humanos , Lubrificantes , Soluções Oftálmicas , Reologia/métodos , Temperatura , Viscosidade
10.
Electrophoresis ; 43(5-6): 776-784, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34679205

RESUMO

Free-flow electrophoresis (FFE) enables the continuous separation and collection of charged solutes, and as a result, it has drawn interest as both a preparative and an analytical tool for biological applications. Recently, a free-flow counterflow gradient focusing (FF-CGF) mechanism has been proposed with the goal of improving the resolution and versatility of FFE. To realize this potential, the factors that influence solute dispersion deserve further attention, including the gradient strength and the parabolic profile of the counterflow. Therefore, the goal of this work is to develop a theoretical model to study the interplay between these factors and molecular diffusion. Overall, an asymmetric solute distribution emerges for a wide range of parameters, and this behavior can be characterized with an exponentially modified Gaussian function. Results show that FF-CGF can achieve high-resolution separations, with the potential for high-throughput protein purification. Moreover, this work provides a practical guide for optimizing experimental conditions, as well as a strong framework for understanding and developing FF-CGF further.


Assuntos
Modelos Teóricos , Difusão , Eletroforese/métodos , Focalização Isoelétrica
11.
Biomicrofluidics ; 15(1): 011302, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33564346

RESUMO

Soft robotics has gone through a decade of tremendous progress in advancing both fundamentals and technologies. It has also seen a wide range of applications such as surgery assistance, handling of delicate foods, and wearable assistive systems driven by its soft nature that is more human friendly than traditional hard robotics. The rapid growth of soft robotics introduces many challenges, which vary with applications. Common challenges include the availability of soft materials for realizing different functions and the precision and speed of control required for actuation. In the context of wearable systems, miniaturization appears to be an additional hurdle to be overcome in order to develop truly impactful systems with a high user acceptance. Microfluidics as a field of research has gone through more than two decades of intense and focused research resulting in many fundamental theories and practical tools that have the potentials to be applied synergistically to soft robotics toward miniaturization. This perspective aims to introduce the potential synergy between microfluidics and soft robotics as a research topic and suggest future directions that could leverage the advantages of the two fields.

12.
ACS Sens ; 6(1): 3-21, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33337870

RESUMO

A review on microfluidic technology for antibacterial resistance study and antibiotic susceptibility testing (AST) is presented here. Antibiotic resistance has become a global health crisis in recent decades, severely threatening public health, patient care, economic growth, and even national security. It is extremely urgent that antibiotic resistance be well looked into and aggressively combated in order for us to survive this crisis. AST has been routinely utilized in determining bacterial susceptibility to antibiotics and identifying potential resistance. Yet conventional methods for AST are increasingly incompetent due to unsatisfactory test speed, high cost, and deficient reliability. Microfluidics has emerged as a powerful and very promising platform technology that has proven capable of addressing the limitation of conventional methods and advancing AST to a new level. Besides, potential technical challenges that are likely to hinder the development of microfluidic technology aimed at AST are observed and discussed. To conclude, it is noted that (1) the translation of microfluidic innovations from laboratories to be ready AST platforms remains a lengthy journey and (2) ensuring all relevant parties engaged in a collaborative and unified mode is foundational to the successful incubation of commercial microfluidic platforms for AST.


Assuntos
Antibacterianos , Microfluídica , Antibacterianos/farmacologia , Bactérias , Humanos , Testes de Sensibilidade Microbiana , Reprodutibilidade dos Testes
13.
Anal Chem ; 93(3): 1266-1270, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33372753

RESUMO

In this note, we report a simple, new method for droplet generation in microfluidic systems using integrated microwave heating. This method enables droplet generation on-demand by using microwave heating to induce Laplace pressure change at the interface of the two fluids. The distance between the interface and junction and microwave excitation power have been found to influence droplet generation. Although this method is limited in generating droplets with a high rate, the fact that it can be integrated with microwave sensing that can be used as the feedback to tune the supply flow of materials presents unique advantages for applications that require dynamic tuning of material properties in droplets.

14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4502-4505, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018994

RESUMO

A dynamic and low-profile unloader tibiofemoral knee brace is designed and prototyped by synergizing concepts from the fields of microfluidics and soft robotics. Microfluidics provides strategies for miniaturization and multiplexing while soft robotics afford the tools to create soft fluidic actuators and allow compliant and inherently safe robotic assistance as part of clothing. The unloader knee brace provides dynamic response during the gait cycle, where a three-point leverage torque is provided only during the stance phase to contribute to joint stability when required and enhance comfort and compliance.Clinical Relevance- This novel soft robotic brace has the potential to reduce device abandonment due to aesthetics, user non-compliance and discomfort due to a constant three-point leverage torque during the gait cycle. Also, this air microfluidics enabled soft robotic knee brace could be expanded upon to improve the efficacy of braces in general and augment the effects of physical therapy, rehabilitation and treatment of musculoskeletal conditions.


Assuntos
Osteoartrite do Joelho , Robótica , Fenômenos Biomecânicos , Braquetes , Humanos , Microfluídica , Osteoartrite do Joelho/terapia
15.
Anal Chem ; 92(10): 7317-7324, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32336087

RESUMO

With its ability to continuously separate and collect charged analytes, free-flow electrophoresis (FFE) has become a useful tool for the purification and real-time analysis of biological mixtures. This work presents a new free-flow counterflow gradient focusing (FF-CGF) mechanism that uses a novel velocity gradient to counterbalance electrophoretic migration. This counterflow gradient is created by simply introducing fluid flow through the sidewalls of the FFE chamber. The theoretical foundation and device design for FF-CGF are provided in this work, followed by implementation and validation, with a detailed discussion on future opportunities and challenges. Initial results show promise, with the potential to improve FFE resolution and offer versatility. Compared to existing focusing techniques, such as free-flow isotachophoresis and isoelectric focusing, no complex buffer compositions are required.


Assuntos
Hemoglobinas/análise , Soroalbumina Bovina/análise , Animais , Bovinos , Focalização Isoelétrica
16.
ACS Sens ; 5(3): 746-753, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32115948

RESUMO

Quantum dot-DNA oligonucleotide (QD-DNA) conjugates have been used in many fields such as nucleic acid bioassays, intracellular probes, and drug delivery systems. A typical solid-phase method that achieves rapid loading of oligonucleotides on surfaces of QDs involves a two-step reaction and is performed in a batch-based approach. In contrast, droplet microfluidics offers many advantages that are unavailable when using batch processing, providing rapid and dense immobilized DNA oligonucleotides on QDs. The presented droplet microfluidic approach allows high-quality QD-DNA conjugates to be produced using one single device, which is designed to have two droplet generators, one droplet merger, and one mixer. One of the droplet generators coencapsulates QDs and magnetic beads (MBs) into nanoliter-sized droplets for the production of QD-MB conjugates and the other encapsulates oligonucleotides in nanoliter-sized droplets. These two streams of droplets then merge at a one-to-one ratio in a chamber. The merged droplets travel along the mixer, which is a serpentine microchannel with 30 turns, resulting in QD-DNA conjugation structures of high quality. This multifunctional microfluidic device provides advantages such as higher degree of control over the reaction conditions, minimized cross-contamination and impurities, and reduction of reagent consumption while eliminating any need for external vortexing and pipetting. To evaluate the quality of the QD-DNA conjugates, they were used as Forster resonance energy transfer (FRET) probes to quantify oligonucleic targets.


Assuntos
DNA de Cadeia Simples/química , Ácidos Nucleicos Imobilizados/química , Dispositivos Lab-On-A-Chip , Pontos Quânticos/química , Semicondutores , Compostos de Cádmio/química , Transferência Ressonante de Energia de Fluorescência , Microfluídica/instrumentação , Compostos de Selênio/química , Sulfetos/química , Compostos de Zinco/química
17.
HardwareX ; 7: e00096, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35495202

RESUMO

An open-source precision pressure pump system and control software is presented, primarily designed for the experimental microfluidics community, although others may find additional uses for this precision pressure source. This mechatronic system is coined 'µPump,' and its performance rivals that of commercially available systems, at a fraction of the cost. The pressure accuracy, stability, and resolution are 0.09%, 0.02%, and 0.02% of the full span, respectively. The settling time to reach 2 bar from zero and stabilize is less than 2 s. Material for building a four-channel µPump (approx. $3000 USD) or an eight-channel µPump (approx. $5000 USD) is approximately a quarter, or a third of the cost of buying a high-end commercial system, respectively. The design rationale is presented, together with documented design details and software, so that the system may be replicated or customized to particular applications. µPump can be used for two-phase droplet microfluidics, single-phase microfluidics, gaseous flow microfluidics and any other applications requiring precise fluid handling. µPump provides researchers, students, and startups with a cost-effective solution for precise fluid control.

18.
Lab Chip ; 19(8): 1490-1501, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30912559

RESUMO

Automated control of individual droplets in microfluidic channels offers tremendous potential for applications requiring high accuracy and minimal user involvement. The feasibility of active droplet control has been previously demonstrated with pressure-driven flow control and visual feedback, but the manual operation required to perform droplet manipulations limited the accuracy, repeatability, and throughput. The present study improves upon the aforementioned challenges with a higher-level algorithm capturing the dynamics of droplet motion for a semi-automated control system. With a simple T junction geometry, droplets can now be automatically and precisely controlled on-demand. Specifically, there is ±10% accuracy for droplet generation, ±1.3% monodispersity for 500 µm long droplets and ±4% accuracy for splitting ratios. On-demand merging, mixing, and sorting are also demonstrated as well as the application of a drug screening assay related to neurodegenerative disorders. Overall, this system serves as a foundation for a fully automated system that does not require valves, embedded electrodes, or complex multi-layer fabrication.


Assuntos
Avaliação Pré-Clínica de Medicamentos/instrumentação , Dispositivos Lab-On-A-Chip , Automação , Software
19.
Electrophoresis ; 40(5): 643-658, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30556281

RESUMO

Counterflow gradient electrofocusing uses the bulk flow of a liquid solution to counterbalance the electrophoretic migration of an analyte. When either the bulk velocity or the electrophoretic velocity of the analyte is made to vary across the length of the channel, there exists a unique zero-velocity point for the analyte. This focusing method enables simultaneous separation and concentration of different analytes. The high resolution and sensitivity achieved are similar to that of isoelectric focusing, which separates analytes based on their isoelectric points, but the key difference is that analytes will instead focus based on their electrophoretic mobility. Dynamically changing the applied voltage or the counterflow rate over time will shift the zero-velocity point, and therefore allows the focused analytes to pass through a fixed detection point, or elute from the separation channel. Throughout the review, a number of different counterflow gradient techniques will be discussed, along with their recent advancements and potential applications.


Assuntos
Distribuição Contracorrente , Eletroforese , Eletrodos , Desenho de Equipamento , Proteínas/análise , Proteínas/isolamento & purificação
20.
ACS Appl Mater Interfaces ; 10(27): 23247-23253, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29923702

RESUMO

Manipulation of light transmission/absorbance and reflection/emission has a great significance in smart windows and displaying media like liquid crystal. Here, we report the usage of an external electric field to reversibly switch the molecular spectra of a model molecule on the basis of its interaction with an electroresponsible polymer brush. Both the UV-vis absorbance spectrum and the fluorescence emission spectrum of the model molecule were confirmed to be electroswitchable. The electroswitchable spectra were experimentally demonstrated to be induced by the electroswitchable statuses of medium anionic poly-allyloxy hydroxypropyl sulfonate (poly-AHPS) brush. Insightfully, the molecular aggregated status of model proflavine molecules could be electrically controlled via the electroresponsible poly-AHPS brushes and then the molecular spectra of the model proflavine molecule also could be electrically and controllably shifted. The success in the manipulation of molecular spectra opens up a wide range of applications not only for displaying but also for nonlinear optics, in vivo imaging, sensors, and environmental inspection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...